Format: Abstract

Full text links

BenthamScience Full-Text Article

Curr Alzheimer Res. 2018 Mar 14;15(5):482-492. doi: 10.2174/1567205014666171106145017.

Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment.

Nishimaki K¹, Asada T^{2,3}, Ohsawa I^{1,4}, Nakajima E², Ikejima C², Yokota T¹, Kamimura N¹, Ohta S^{1,5}.

Author information

Abstract

BACKGROUND: Oxidative stress is one of the causative factors in the pathogenesis of neurodegenerative diseases including mild cognitive impairment (MCI) and **dementia**. We previously reported that molecular **hydrogen** (H2) acts as a therapeutic and preventive antioxidant.

OBJECTIVE: We assess the effects of **drinking** H2-**water** (**water** infused with H2) on oxidative stress model mice and subjects with MCI.

METHODS: Transgenic mice expressing a dominant-negative form of aldehyde dehydrogenase 2 were used as a **dementia** model. The mice with enhanced oxidative stress were allowed to drink H2-**water**. For a randomized double-blind placebo-controlled clinical study, 73 subjects with MCI drank ~300 mL of H2-**water** (H2-group) or placebo **water** (control group) per day, and the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) scores were determined after 1 year.

RESULTS: In mice, **drinking** H2-**water** decreased oxidative stress markers and suppressed the decline of memory impairment and neurodegeneration. Moreover, the mean lifespan in the H2-**water** group was longer than that of the control group. In MCI subjects, although there was no significant difference between the H2- and control groups in ADAS-cog score after 1 year, carriers of the apolipoprotein E4 (APOE4) genotype in the H2-group were improved significantly on total ADAS-cog score and word recall task score (one of the sub-scores in the ADAS-cog score).

CONCLUSION: H2-water may have a potential for suppressing dementia in an oxidative stress model and in the APOE4 carriers with MCI.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

KEYWORDS: ADAS-cog score; ApoE4; aldehyde dehydrogenase 2; **hydrogen**; **hydrogen water**; mild cognitive impairment; oxidative stress; randomized clinical study

PMID: 29110615 DOI: <u>10.2174/1567205014666171106145017</u>

27/03/2018	Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment PubMed