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INTRODUCTION
Hyposmia in Parkinson’s disease (PD) was first reported in 
1975 by Ansari and Johnson.1 Subsequent studies revealed 
that (i) more than 70 to 80% of PD patients have hyposmia; 
(ii) hyposmia is one of the earliest symptoms of PD; (iii)
hyposmia is correlated with severity of cognitive dysfunc-
tion.2-5 Abnormal aggregation of α-synuclein in dopaminergic
neurons in the substantia nigra causes neuronal death and is a
hallmark of PD. The abnormal aggregate of α-synuclein starts
from the olfactory epithelium and/or intestinal neural plexus,
and enters the brain.6 The expression level of α-synuclein is
normally high in the olfactory epithelium.7 The abnormal ag-
gregate of α-synuclein in the olfactory epithelium is likely due
to some environmental toxins and/or genetic factors,8 but the
underlying mechanisms remain to be elucidated. Hyposmia
is quantitatively evaluated by the University of Pennsylvania
Smell Identification Test9 or the Sniffin’ Sticks odor identi-
fication test.10 Some substances in these tests, however, are
culture-specific and are unfamiliar to Japanese people. To
circumvent the cultural barrier, the odor stick identification

test for Japanese (OSIT-J) was developed and is comprised 
of 12 odors embedded in microcapsules.11,12

Neurodegeneration of the substantia nigra in PD is caused 
by Lewy bodies that are comprised of abnormally aggregated 
α-synuclein. Braak et al.13 reported in 2002 that Lewy bodies 
start from the dorsal vagal nucleus, and ascend to the pons, the 
midbrain, the limbic system, and the cerebral cortex. The ante-
rior olfactory nucleus in the olfactory bulb is also the earliest 
site where Lewy bodies are observed. The formation of Lewy 
bodies is causally associated with oxidative stress.14 Urinary 
excretion of 8-hydroxy-2′-deoxyguanosine (8-OHdG) serves 
as a marker for oxidative stress, and is increased on average 
2.3-fold in PD.15 We later reported that urinary 8-OHdG is 
elevated only in PD with hallucinations but not with dementia 
or other clinical features.16

As of 2015, the effects of molecular hydrogen on various 
diseases have been reported in more than 300 original articles.17

Reactive oxygen species (ROS)-mediated diseases, inflamma-
tory diseases, and metabolic diseases constituted ~70%, 20%, 
and 6% of original articles, respectively.17 In these studies, 
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hydrogen was administered by ingestion of hydrogen water 
in ~25% of original articles, inhalation of hydrogen gas in 
~20% of original articles, and by other methods in ~55% of 
original articles (intraperitoneal injection of hydrogen-rich 
saline, bathing in hydrogen-rich water, etc.).17 We previously 
reported that drinking hydrogen-rich water almost normalized 
a rat model of 6-hydroxydopamine-induced hemiparkinson-
ism.18 Fujita et al.19 similarly reported a marked effect of 
drinking hydrogen-rich water in a mouse model of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine-induced PD. We later 
reported that intermittent inhalation of 2% hydrogen gas for 
15 minutes at a 1-hour interval from 6 p.m. to 6 a.m. for 5 
weeks ameliorated a rat model of 6-hydroxydopamine-induced 
hemiparkinsonism, whereas continuous inhalation of 2% 
hydrogen gas for 24 hours a day for 5 weeks had no effect.20 
A randomized, double-blinded, placebo-controlled, parallel-
group clinical pilot study revealed that drinking 1000 mL/d of 
hydrogen water for 48 weeks significantly ameliorated total 
Unified Parkinson’s Disease Rating Scale (UPDRS) scores 
in PD patients.21 The effect of inhalation of hydrogen gas has 
not been examined in PD patients, but is reported in patients 
having percutaneous coronary intervention22 and in patients 
with acute cerebral infarction.23

Here we examined the effect of inhalation of hydrogen gas 
on hyposmia, non-motor symptoms, activities of daily living 
(ADLs), and urinary excretion of 8-OHdG. We found that al-
though short-term inhalation of hydrogen gas did not affect any 
clinical parameters, it significantly increased urinary 8-OHdG.

SUBJECTS AND METHODS
Subjects
The study was approved by the ethics review committee of 
Nagoya University Graduate School of Medicine (approval 
number 2015-0295). The clinical trial was registered at the 
University Hospital Medical Information Network (identi-
fier UMIN000019082). This study follows the Consolidated 
Standards of Reporting Trials (CONSORT) guidelines. Written 
informed consent was obtained from 20 PD patients (Addi-
tional Table 1). Parkinsonism other than PD was excluded. 
All PD patients were medicated with levodopa, and no drug 
was changed during the study.

Procedures
A randomized, double-blinded, placebo-controlled, crossover 
trial was performed (Figure 1). Twenty PD patients were 
evenly divided into two groups by one of the authors, AY. At 
baseline, we examined olfactory function, non-motor symp-
toms, and ADLs, as stated below. We also collected urine 

for measuring 8-OHdG. Either a true or placebo hydrogen-
producing machine was sent to the patient’s home and then 
returned after 4 weeks. The treated group received a true ma-
chine, whereas the control group received a placebo machine. 
After 4 weeks of inhalation (10 minutes twice per day), the 
same clinical and laboratory markers were examined. After an 
8-week washout period, the true and placebo machines were 
switched, and the markers were examined before and after 
the 4 weeks of inhalation (10 minutes twice per day). The key 
was open to evaluators after the crossover trial was finished.

Hydrogen-producing machine and inhalation of hydrogen gas
The true hydrogen-producing machine generated 3.0–3.5% 
hydrogen gas in 2 L/min of mixed air by electrolysis. Assuming 
that the PD patients inhaled 5 L/min of air, 3.0–3.5% hydro-
gen in 2 L/min of air would equate to 1.2–1.4% hydrogen-air 
mixture. The placebo machine was made by disconnecting 
an electrode for electrolysis, but still produced 2 L/min of air 
using the air pump. The true and placebo machines could not 
be differentiated without a hydrogen gas-detecting device. 
We previously reported that intermittent inhalation of 2% hy-
drogen gas for 15 minutes, 12 times a day, but not continuous 
inhalation of 2% hydrogen gas, improved motor deficits in a 
rat model of 6-hydroxydopamine-induced hemiparkinsonism.20 

However, the improvement by inhalation of hydrogen gas for 
15 minutes, 12 times a day, was not as effective as that by ad 
libitum administration of hydrogen water.18,20 To simulate a 
temporal profile of hydrogen concentrations akin to drink-
ing hydrogen water, we instructed participants to inhale the 
gas produced by the true or placebo machine for 10 minutes 
in the morning and 10 minutes in the evening using a nasal 
cannula for 4 weeks. We confirmed after the 4 weeks that all 
participants complied with the instruction.

Odor examination
In the OSIT-J (Daiichi Yakuhin Sangyo Ltd., Tokyo, Japan), 
test odorants were microencapsulated and contained within 
an odorless solid cream dispensed in a lipstick container.12 
The odorant was applied to a strip of paraffin paper within 
a 2-cm diameter circle. The paper strip was folded with the 
odorant inside, and rubbed together to release the odorant. 
The total number of correct answers for the 12 odorants made 
the OSIT-J score. Correct answers were not disclosed to the 
subjects after the examination.

Measurement of urinary 8-hydroxy-2′-deoxyguanosine
Urinary samples were kept at –20˚C before analysis. Con-
centrations of urinary 8-OHdG were measured by the New 
8-OHdG Check ELISA (Nikken SEIL, Tokyo, Japan), and 

Figure 1: Protocol for randomized, double-blinded, 
placebo-controlled, crossover trial of inhalation of true 
and placebo hydrogen gas for 4 weeks.
Note: The odor stick identification test for Japanese 
(OSIT-J), the Unified Parkinson’s Disease Rating Scale 
scores 1 and 2 (UPDRS1 and UPDRS2), and quantification 
of urinary 8-hydroxy-2′-deoxyguanine (8-OHdG) normalized 
for urinary creatinine (Cre) were performed at the indicated 
time points. w: Weeks.
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P = 0.02

were normalized by concentrations of urinary creatinine that 
was measured by the Creatinine (urinary) Colorimetric Assay 
Kit (Cayman Chemical, Ann Arbor, MI, USA).

Unified Parkinson’s Disease Rating Scale scores
We used UDPRS scores 1 and 2 for quantitative evaluation 
of clinical severity of PD. UPDRS1 was a rank score for 
psychomotor functions and mood. UPDRS2 was a rank score 
for evaluating ADLs. 

Statistical analysis
The data were analyzed using JMP Pro 13 (SAS Institute, 
Cary, NC, USA). P-values less than 0.05 by Student’s paired 
t-test were designated as having statistical significance. The 
statistical significance of differences was analyzed using one-
way analysis of variance (ANOVA).

RESULTS
A randomized, double-blinded, placebo-controlled, cross-
over trial of inhalation of ~1.2–1.4% hydrogen-air mixture 
or placebo for 10 minutes twice a day for 4 weeks in 20 PD 
patients revealed that OSIT-J (P = 0.77), UPDSR1 (P = 0.84), 
and UPDRS2 (P = 0.15) were not changed by hydrogen gas 
(Table 1). In contrast, inhalation of hydrogen gas for 4 weeks 
increased urinary excretion of 8-OHdG by 16% with statistical 
significance (P = 0.02) (Table 1 and Figure 2).

DISCUSSION
Molecular hydrogen is the smallest molecule in the universe 
and has the highest diffusibility.24 Inhaled hydrogen gas readily 
enters the blood stream through the alveoli.20,25 The 1.2–1.4% 
hydrogen-air mixture inhaled by PD patients would increase 
the hydrogen concentrations at the olfactory bulbs and the 
alveoli by 9.4–10.9 µM according to Henry’s law. Inhalation 
of hydrogen gas generally elevates hydrogen concentrations 
more than ingestion of hydrogen water. Drinking 200-mL satu-
rated hydrogen water (0.8 mM)20 and 530-mL hypersaturated 
hydrogen water (2.5 mM)26 increased the hydrogen concentra-
tions in the organs by ~0.016 µM and ~0.21 µM, respectively. 
The hydrogen concentration from either inhaling or drinking 
returns to baseline in ~30 to 60 minutes.20,25,26 

Inhalation of hydrogen gas had no effect on olfactory func-
tion, non-motor symptoms, and ADLs. Marginal improvement 
of OSIT-J scores of 0.15 (3.2%) by hydrogen was likely to 
represent a high variability of OSIT-J scores. The lack of the 

Figure 2: Urinary 8-OHdG/Cr before and after inhalation of true and placebo 
hydrogen gas for 4 weeks.
Note: (A) Twenty Parkinson’s disease (PD) patients. P value by Student’s paired 
t-test is indicated. (B) Ten PD patients who inhaled hydrogen first. (C) Ten PD 
patients who inhaled placebo first. (B, C) No statistical significance by one-way 
analysis of variance. Date are expressed as the mean ± SE. 8-OHdG: 8-Hydroxy-
2′-deoxyguanine; Cr: creatine.

Table 1: Metrics before and after inhalation of true and placebo hydrogen gas for 4 weeks

Hydrogen Placebo

Before After P Before After P

OSIT-J 4.7±2.0 4.85±1.9 0.77 4.55±2.4 4.6±2.2 0.92
UPDRS1 2.2±1.6 2.3±1.9 0.84 2.7±2.4 2.4±1.9 0.41

UPDRS2 13.7±9.0 15.9±7.0 0.15 16.6±9.1 16.8±6.3 0.93

8-OHdG/Cr (ng/mg Cr) 9.5±9.7 11.0±5.9 0.02 9.2±6.9 9.7±6.8 0.59

Note: Date are expressed as the mean ± SD. P values are calculated by paired t-test. 8-OHdG: 8-Hydroxy-2′-deoxyguanine; Cr: creatine; UPDRS: Unified Parkinson’s 
Disease Rating Scale.

effect of hydrogen inhalation on olfactory function, non-motor 
symptoms, and ADLs may be due to a short trial period, short 
inhalation time (10 minutes twice a day), and/or low hydrogen 
concentration (1.2–1.4% hydrogen). Alternatively, these clini-
cal features may not be sensitive enough to detect the marginal 
effects, if any, of hydrogen inhalation. In contrast to the lack 
of an improvement of clinical features, inhalation of hydrogen 
gas significantly increased urinary 8-OHdG levels, suggesting 
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that hydrogen increased production of ROS. The 16% increase 
of 8-OHdG by hydrogen, however, is much less compared to 
the 53% increase by smoking 15–20 cigarettes per day,27 63% 
increase in prostate cancer,28 95% increase in bladder cancer,28 
335% increase in non-insulin-dependent diabetes mellitus,29 
and the 355% increase in insulin-dependent diabetes melli-
tus.29 Similarly, 30 km/d running for 8 days increases urinary 
8-OHdG by 26%,30 and 60-minute exercise at 70% of maximal 
O2 uptake increases urinary 8-OHdG by 276%.31 In contrast to 
disease-associated increase in urinary 8-OHdG, the exercise-
mediated increase of 8-OHdG is returned to the normal level 
in 2 days.31 Exercise-induced ROS32 and inflammation33 play 
important roles in mediating the benefits and cellular adapta-
tions of exercise. Although we did not analyze the temporal 
profile of the 8-OHdG surge in our patients, rapid dissipation 
of hydrogen from our body20 implies that patients were tem-
porarily exposed to ROS. Thus, inhalation of hydrogen gas for 
10 minutes in our patients might have mimicked a short and 
mildly strenuous exercise in regard to ROS exposure.

Ohsawa et al.34 reported in 2007 that molecular hydrogen 
reduces hydroxyl radicals and, to a lesser extent, peroxyni-
trite. However, significant beneficial effects from a radical-
scavenging activity of hydrogen are unlikely to occur in our 
body, because (i) the concentration of hydrogen is too low 
compared to those of nucleophilic biomolecules, (ii) hydrogen 
rapidly dissipates from our body, mostly in the breath, and 
returns to baseline in ~30 minutes,20,25 (iii) the reaction rate 
constant between hydrogen and hydroxyl radical is 4.2 × 107 
M/s, which is three orders of magnitude slower than most 
reactions with hydroxyl radicals,35  and (iv) intestinal bacteria 
produces 12 L of hydrogen in a day by metabolizing only 40 g 
carbohydrate,36,37 which constantly yields on average 10 ppm 
(2–12 ppm) of hydrogen in our breath.20,26,38,39 

Hydrogen has been reported to decrease urinary 8-OHdG,26 
and tissue malondialdehyde, a marker of lipid peroxidation.40 
However, in our study, inhalation of hydrogen gas mildly 
increased ROS production as measured by 8-OHdG. Mild 
increases in ROS production may provide beneficial effects 
by evoking hormesis. Hormesis is a physiological process, in 
which mitochondrial stress activates cytosolic signaling path-
ways to make the cells less susceptible to oxidative damage.41 
Indeed, exercise-induced ROS production plays critical roles 
in mediating the benefits and cellular adaptations of exercise 
training. Consequently, ingestion of antioxidants has been 
reported to blunt/impair exercise training benefits.42,43 Perhaps 
a mild and transient increase in ROS production from H2 
administration may similarly be beneficial. This hypothesis 
is corroborated by several other studies demonistrating that 
hydrogen administration increases ROS production, and are 
accompanied by a beneficial effect. For example, in young 
athletes, strenuous exercise increased the blood level of de-
rivatives of reactive oxidative metabolites, and administration 
of hydrogen water mildly potentiated its increase while also 
suppressing the elevation of blood lactate and improving 
exercise-induced decline of muscle function.44 Similarly, in a 
mouse model of a surgically injured brain, hydrogen increased 
malondialdehyde in the brain while also improving cerebral 
edema and the neurobehavioral score.45 Likewise, inhalation 

of 2.9% hydrogen gas for 2 hours increased malondialdehyde 
in normal mouse brain ~4-fold.46 In Arabidopsis, hydrogen-
rich water increased ROS production, which in turn induced 
drought tolerance.47 Lastly, Murakami et al. recently reported 
that hydrogen increases the mitochondrial membrane potential, 
and the production of superoxide radicals in SH-SY5Y cells.48 

They also demonstrated that hydrogen-induced oxidative stress 
activates the Nrf2 anti-oxidative pathway, and proposed that 
hydrogen is a mitohormetic effector. Hydrogen-mediated 
activation of the Nrf2 signaling pathway has been repeatedly 
reported in different disease models,48-56 and no effect of hy-
drogen has been observed in Nrf2-knockout mice.50 Hormesis 
may also be involved in contributing to the protective effect 
of hydrogen on a mouse model of ventilator-induced lung 
injury, where hydrogen enhanced DNA binding of NF-κB in 
the first hour followed by its suppression in the second hour.57 
Similarly, the neuroprotective effect of hydrogen in a model 
of subarachnoid hemorrhage in rabbits was associated with 
hydrogen-mediated activation of the NF-κB/Bcl-xL pathway.58 
NF-κB activation in the early phase may have been induced by 
hydrogen-induced increase in ROS production as the hormetic 
mediator. We also reported by meta-analysis of gene-expres-
sion profiles of normal rodent livers that hydrogen induces 
heat-shock response, and subsequently leads to transient ar-
rest of cell cycles and upregulation of collagen biosynthesis,59 
which may also be a form of hormesis. Considering that the 
primary and long term benefits of hydrogen are unlikely due to 
it acting as a radical scavenger in our bodies, the mitohormetic 
response is an attractive and a feasible mechanism to explain 
the effect of hydrogen.

CONCLUSION
We observed that inhalation of ~1.2–1.4% hydrogen-air mix-
ture for 10 minutes twice a day for 4 weeks increased urinary 
8-OHdG levels by 16%, which was markedly less than the 
over 300% increase in diabetes, and was more comparable to 
the increase after a bout of strenuous exercise. Increases of 
oxidative stress by hydrogen have been previously reported, 
along with its ability to activate the Nrf2, NF-κB pathways, 
and heat shock responses. Although we did not observe any 
beneficial effect of hydrogen in our short trial, we propose 
that the increased 8-OHdG and other reported stress responses 
from hydrogen indicate that its beneficial effects are partly or 
largely mediated by hormetic mechanisms.
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Additional Table 1: Demographic features of participants 

Item Data 

Number of participants (Male/female) 20 (8/12) 
Age (years) 69.0±6.8 
Hoehn and Yahr score 2.3±0.8 
OSIT-J score at baseline 4.7±2.2 
UPDRS1 score at baseline 2.2±1.7 
UPDRS2 score at baseline 13.7±9.2 

Note: Date as expressed as the mean ± SD except number of participants. 8-OHdG: 
8-Hydroxy- 2’-deoxyguanine; Cr: creatine. UPDRS: Unified Parkinson’s Disease Rating 
Scales. 

 


